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ABSTRACT
The emergence of the Spatial Web – the Web where content
is tied to real-world locations has the potential to improve
and enable many applications such as augmented reality,
navigation, robotics, and more. The Spatial Web is missing a
key ingredient that is impeding its growth – a spatial naming
system to resolve real-world locations to names. Today’s
spatial naming systems are digital maps such as Google and
Apple maps. These maps and the location-based services
provided on top of these maps are primarily controlled by
a few large corporations and mostly cover outdoor public
spaces. Emerging classes of applications, such as persistent
world-scale augmented reality, require detailed maps of both
outdoor and indoor spaces. Existing centralized mapping
infrastructures are proving insufficient for such applications
because of the scale of cartography efforts required and the
privacy of indoor map data.
In this paper, we present a case for a federated spatial

naming system, or in other words, a federated mapping in-
frastructure. This enables disparate parties to manage and
serve their own maps of physical regions and unlocks scal-
ability of map management, isolation and privacy of maps.
Map-related services such as address-to-location mapping,
location-based search, and routing needs re-architecting to
work on federated maps. We discuss some essential services
and practicalities of enabling these services.
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1 INTRODUCTION
Many have predicted the future of the Web to be the integra-
tion of Web-like content with the real-world. This overlay
of virtual content on top of the physical world, which we
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refer to as the Spatial Web, holds promise for dramatically
changing many applications from navigation, to engineer-
ing, education, and more. While the vision is promising, the
reality is that Spatial Web applications are difficult to create.

Looking at existing systems, we can see that a key enabler
for such systems has often been the underlying infrastruc-
ture that makes it easy to discover and reference content. For
the Web, the Domain Name System (DNS) provided a sim-
ple mechanism to convert human-readable names (domain
names and URLs) to server IP addresses that can provide
relevant content. The Spatial Web requires a similar infras-
tructure to relate human-readable names (e.g., The White
House) with real-world locations and the content associated
with that location (e.g., White House web page). In other
words, we need a spatial naming system. Since this naming
system translates names to physical locations, we use the
term map or mapping service to refer to this naming system.
The design of a naming system significantly influences

and constrains the behavior of any distributed system built
on top of it. For example, a naming system’s mechanisms to
add new entities to a distributed system can create bottle-
necks to maintaining and scaling a system. The Web and the
Internet at large were able to rapidly scale and incorporate a
large number of hosts in their early days primarily due to
the federated and pseudo-decentralized nature of the DNS.
The federated design of the DNS allowed organizations to
independently manage and control their level of participa-
tion on the Internet. The link between spatial naming and
application constraints is no different and we can see this
relationship in current deployed systems.

Today’s spatial naming systems are digital maps like Google
and Apple maps. These digital maps are supported by central-
ized infrastructures and maintained by large corporations.
Only the information that is gathered and exposed by orga-
nizations maintaining these centralized maps is available to
applications, thereby severely limiting their functionality. In
this paper, we make the case that to enable the rapid growth
of the Spatial Web, we need an underlying spatial naming
system or a map that is federated and can be independently
controlled and maintained by disparate organizations.
Extending spatial applications indoors is a use case that

especially highlights the importance of a federated mapping
infrastructure. Indoor maps contain sensitive information
that needs to be owned and controlled by the owner of the
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physical space. Many organizations, such as stores, would
benefit from providing accurate map data for applications
such as product search [3, 22], but would not be willing to
publicly host detailed maps. Furthermore, the storage and
cartography effort required for indoor spaces far outweighs
that of outdoor maps. Some estimate that there could be
more than 100 billion square feet (and growing) of indoor
space in the world [6] and surveying this space will likely
be impractical for any single centralized organization.

In this paper, we introduce OpenFLAME1, an architecture
for a federated mapping infrastructure. OpenFLAME is or-
ganized into ‘map servers’ – independent services deployed
by potentially disparate parties that provide map data and
location-based services confined to a physical region. Open-
FLAME provides the means to discover and tie these services
together thereby providing a unified spatial naming system
that can support spatial applications. A federated mapping
infrastructure presents several challenges.

• The maps are heterogeneous and can vary from one
another in multiple ways. They can have different fi-
delities (eg. 2D and 3D maps), laid out in different
coordinate systems (eg. indoor maps may not have
exact latitude and longitude coordinates as its difficult
to align them [10, 25]), and have different labels for
common overlapping areas.

• Providing location-based services such as address-to-
location lookup, routing, and search on top of federated
maps requires a re-design of their architecture.

• We need a system that discovers map providers in
a region. The discovery system should account for
fuzziness of map boundaries and multiple ownership
of physical regions.

In § 2, we give an example of a typical Spatial Web appli-
cation that would be made possible by a federated mapping
infrastructure. § 3 describes the abstraction of map and map
servers. § 4 briefly describes the abstraction of location-based
services typically used by spatial applications that would act
as specifications for services to be enabled by OpenFLAME.
We also describe how the existing centralized model provides
these services. § 5 discusses some practical considerations for
realizing the federated mapping infrastructure in practice.

2 EXAMPLE APPLICATION
To better understand the needs of future Spatial Web appli-
cations, we start by describing in detail what we consider a
typical such application – grocery store navigation.
Let us consider a scenario where a user wishes to search

for a product of interest, e.g., a particular flavor of seaweed,
near their location. The application then provides the user

1OpenFLAME stands for Open Federated Localization and Mapping Engine

with pedestrian navigation guidance to the exact shelf in a
grocery store nearby that stocks the seaweed.
First, consider how an existing navigation application

would support this task. The application would have to rely
on a centralized database of destination locations and nav-
igable paths exposed by a map provider such as Google.
However, these databases are typically limited to street ad-
dresses and public landmarks. The seaweed in the store or
the store aisles, for example, would not be a part of the map
database unless the store has requested Google to maintain
a database of the store inventory indexed by shelf locations
(which would involve complicated and expensive integra-
tion between Google and the store’s systems). Second, the
navigation application would rely on a combination of tech-
nologies to determine the location of a user with respect to
the map data, including GPS, image data from Google Street
View, and WiFi/cellular signal strength. The availability of
these technologies is limited to outdoor locations for GPS
and to StreetView covered regions for image localization
(typically public roads). Therefore, the navigation applica-
tion would not work well within the store even if the Google
Maps database included the user’s product of interest.
Ideally, we would like the application to provide precise

visual guidance along all steps of the path. Existing applica-
tions fail to meet this objective in multiple ways – failing
to provide precise guidance when localization is inaccurate
and, in this case, failing to provide complete guidance as the
requested seaweed is not part of Google Map’s database.
We envision OpenFLAME would enable such spatial ap-

plications and more. In this case, the grocery store would
maintain its own map independent of Google Maps. The
grocery store’s map would have a precise map of the store,
along with its current inventory laid out against the local
map. When the navigation application searches for the near-
est seaweed, OpenFLAME would discover the grocery store’s
map nearby and request from it the necessary shelf loca-
tion information. Once the map and the location of interest
within the map have been identified, the application can
now estimate the navigation route from the user’s current
location on the street to the grocery store shelf. The route
would be a combination of routes calculated by both Google
Maps and the grocery store’s map. Google Map route would
lead the user to the storefront, while the grocery store’s map
would lead the user further to the shelf with the desired
product. When outdoors, the application could rely on GPS
or Street-view imagery to localize the user, but once indoors,
the application would switch to the localization service pro-
vided by the grocery store’s map to localize the user precisely
within the store.
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2.1 Challenges
The application described above exposes some challenges
associated with realizing a federated mapping infrastructure.
Location-based services: Notice that multiple location-

based services were used by the application. Location-based
search to search for a product. Routing to calculate the path
on which to navigate the user. Finally, localization to estimate
where the user is with respect to the map while navigating.
In a centralized infrastructure, the client application simply
requests these services from a single entity that has access to
all of the map data. In OpenFLAME, the client device first has
to discover relevant map servers and request the required
services from these map servers, stitching the results if re-
quired. § 4 defines the main classes of location-based services.
§ 5.2 shows how location-based services can be provided on
top of a federated mapping infrastructure.

Heterogeneity of maps: Maps can be heterogeneous in
multiple ways. Google Maps and the grocery store map in
the above example can differ with respect to: Fidelity – the
grocery store map can be more detailed with precise 3D in-
formation of shelves and what is stocked in them. Google
Maps would be sparser in comparison. Coordinate frame of
reference – the grocery store map might not be properly ori-
ented in the geographic coordinate system of latitudes and
longitudes as well as Google Maps. Aligning an indoor map
accurately with the geographic coordinate system is a noto-
riously difficult problem [10, 25] and needs expensive survey
equipment [32, 33]. The data within the grocery store map
is only precisely aligned against its own separate coordinate
system. Common area labels – even if the maps have an over-
lapping region (e.g., some portion of the storefront), they
might be labeled differently making alignment harder. Het-
erogeneity makes it challenging for map providers to jointly
provide unified location-based services to applications.

Overlapping maps: In the above example, Google Maps
also has sparse map data coverage of the region containing
the grocery store. Therefore, multiple maps can overlap with
each other. Note that in traditional naming systems such
as DNS, there is no ambiguity concerning the ownership of
a namespace. For example, the domain www.google.com is
owned by Google and no other organization. However, the
possibility of overlapping maps makes building a federated
spatial naming system challenging.

3 MAP AND MAP SERVERS
A map is a representation encoding relationships and at-
tributes of spatial entities in a geographic region. While
traditionally, a map refers to the visual representation of
geographic features, in our context it is the data that under-
lies such visual representations. We adopt the widely used
OpenStreetMap’s data model for a map [27]. A map has three

major elements – nodes, ways and relations. A node repre-
sents a point on the map, defined by its coordinates within
the map. A way is an ordered list of nodes that defines a poly-
line and used to represent navigable paths, borders, rivers,
etc. A relation is used to represent a collection of related map
elements – nodes, ways or other relations. Each map element
can have any metadata associated with it.
A map server is a system that stores the map of a region

and provides services such as search and routing on the map.
The usefulness of a map server is determined by the services
it implements. It can also impose fine-grained security and
privacy policies on users and applications (§ 5.3).

A map in OpenFLAME is conceptually equivalent to a zone
in a traditional naming system like the DNS [23]. A DNS zone
is a portion of the DNS namespace that is independently man-
aged by an organization. Similarly, a map is a portion of the
spatial namespace that is independently managed by an or-
ganization. A map server is akin to a name server in DNS
parlance. However, there are two key differences between the
concept of a DNS zone and a map as a zone. First, unlike DNS
zones, the ‘boundary’ of a map is fuzzy. Whenever a DNS
zone, such as google.com is assigned to an organization, it
is clear that even slight variations such as googli.com is
outside the purview of the organization. However, in the
spatial world, the polygonal boundary that might define the
confines of a map is never exact. For example, the boundary
of the grocery store map in the example in § 2 might spill
over to other stores nearby. This is inevitable especially for
indoor maps, where finding out the exact geographic coordi-
nates of walls and boundaries involves expensive surveying.
Second, multiple maps may cover the same physical region.
For example, OpenFLAME should include both Google and
Apple maps in its infrastructure. In DNS, ownership over
a namespace is given exclusively to one zone. However, in
the spatial naming system, multiple zones may cover the
same physical region. In § 5.1, we briefly discuss how these
challenges can be tackled in practice.

4 LOCATION-BASED SERVICES
A spatial naming system is only useful to spatial applications
if we can provide location-based services on top of it. In
this section, we will discuss existing location-based services
that spatial applications use, which will act as specifications
for the services that our naming system should enable. In
§ 5.2, we discuss how these services can be implemented in
practice on a federated map.
Map providers offer a host of location-based services on

their platform [14, 20, 24, 26]. However, all of these services
can be derived from a smaller set of base services. Some
base services are different kinds of queries on the map data:
simple address-to-location lookups, location-based search,
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and routing. Other base services are application enablers
such as localization and map visualization. We describe these
base services and how other services are derived from them.
Forward and reverse geocode: The process of convert-

ing a text-based address to a location on the map [13] is
forward geocode. This underlies the sub-service of placing
markers on the map given an address and is also a prelimi-
nary step in routing, as applications usually request a path
between two addresses rather than two map nodes. The ser-
vice that coverts a geographic location to a map node is
called reverse geocode. It is the underlying service that sup-
ports click interactions on the map and snapping raw GPS
coordinates to roads on the map while navigating [19, 21].
Location-based search: Searching for map nodes using

their metadata or features as keywords in or around a region
is called location-based search. This service serves requests
of the form "restaurants around me", "parking spot near the
theater", etc. Map providers index map node features and
metadata against their location to provide this service.

Routing: Routing is the service that provides a path from
onemap node to another. The path usually optimizes ametric
such as distance, travel time, number of turns, toll price etc.
Today’s map providers typically run versions of shortest-
path graph algorithms against their centralized map data to
estimate optimized paths [4].
Localization: The service that informs a device of its

location and orientation with respect to a map is called local-
ization. Today, since most map data aligns with a global geo-
graphic system, location-based applications typically rely on
large-scale positioning systems like GPS, WiFi access points,
cell towers, and Bluetooth [2, 7, 16].
Tile rendering: Tile rendering powers interactive maps

by delivering map tiles—2D images or 3D meshes—based on
the user’s latitude, longitude, and zoom level. As users drag
or zoom, the tile server dynamically loads the appropriate
tiles to update the view.

4.1 Centralized map model
Figure 1 shows how today’s centralized map infrastructures
provide location-based services. The map data of the world is
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preprocessed into different forms required for each location-
based service. For example, to provide the routing service,
map data might be converted to a graph and then prepro-
cessed using the contraction hierarchies algorithm which
makes routing queries faster to compute [11]. The tile render-
ing service might pre-render tiles corresponding to latitudes,
longitudes and zoom levels even before they are requested
by any client. Geocode, reverse geocode, and location-based
search would involve indexingmap nodes and their metadata
against geographic coordinates.
The API calls to each service would then use the pre-

processed data to serve requests. For example, the tile service
API would fetch appropriate tiles from the pre-rendered set
and serve them to the client.

5 PRACTICAL CONSIDERATIONS
Figure 2 shows the OpenFLAME architecture. OpenFLAME
client relies on a discovery mechanism to identify all the
map providers in a region. § 5.1 discusses how the challenges
presented in § 3 can be tackled in practice while implement-
ing a map server discovery system. § 5.2 discusses the split
of responsibilities between the client and map servers for
providing services described in § 4. Federation enables a finer
grained security and privacy model discussed in § 5.3.

5.1 Map server discovery
The foundation that underlies all location-based services is
the discovery layer. The discovery system would essentially
maintain the data mapping locations to map servers in that
location. The discovery query would involve the coarse loca-
tion of the device obtained from ubiquitous sources like the
GPS. The discovery system would then respond to the query
with a list of map providers for the region.

Several existing systems such as spatial databases [17, 18,
29], Geographic Information Systems (GIS) [5, 9], and the
Intentional Naming System (INS) [1] can be used for spatial
discovery. However, deploying the infrastructure required
for these systems from the ground up and maintaining them
would be a major impediment to the adoption of the Spatial
Web. Let us consider the following observations about the
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discovery system that allows us to use an existing widely
deployed infrastructure—the DNS. 1. The fuzziness of map
boundaries discussed in § 3 does not require a database that
maintains precise polygonal boundaries. 2. Discovery queries
are exclusively read queries and do not require a full-fledged
database with transaction processing. 3. The address of the
map servers are not expected to change frequently so the
system would benefit from a ubiquitous caching mechanism.
To repurpose the already federated DNS to work as the

spatial database, we can leverage spatial indexing systems
(e.g., S2 [15], H3 [31]) to convert locations to hierarchical
domain names. A polygonal region, or a zone, can be approx-
imated by a collection of domain names. Coarse location
in the form of latitude and longitude can also be converted
to a domain name. Therefore, the discovery query would
be a simple domain look-up on the DNS. Leveraging DNS
for our purpose gives us access to its ubiquitous caching
mechanisms, large-scale deployments, and infrastructure.
Previously, the Spatial Name System [12] has also considered
using the DNS to assign and resolve hierarchical location-
based names. However, their use of civic addresses as domain
names while maintaining geodetic location as part of record
data results in inefficient location-based discovery process.

5.2 Location-based services
In this section, we discuss split of responsibilities between
OpenFLAME client and map servers in providing location-
based services from § 4 on top of a federated map.

Geocode: Given a text string of a hierarchical address, the
client first uses the geocode service of a large world-map
provider (e.g., OpenStreetMap [28]) to get the coarse location
of a part of the address. The client then discovers finer map
servers in the coarse location which search in their own
maps for the exact address.

Reverse geocode and location-based search: Searching
for map nodes around a location would begin by the client
discovering map servers around a given location. The client
would then ask each map server to search for the relevant
items within their maps and return relevant results, if any.
The client would then rank results frommultiple map servers
and present them to the application.

Routing: The client first obtains the location of the source
and destination addresses using the Geocode service de-
scribed above. Then it discovers all the map servers that
lie along the way from the source to the destination. Each
map server would calculate the route that is relevant for the
region that they cover. The client would collect paths from
all relevant map servers, and stitch them together such that
the final path optimizes a metric of interest.
Localization: The process of localizing a device starts

with the OpenFLAME client discovering map servers in the

location. The client might discover multiple overlapping
servers or even unrelated maps because of the coarseness of
the discovery process. Once the map servers are discovered,
the client sends them ‘location cues’ collected by the device
sensors – images, beacon signals, fiduciary tag scans, etc.
The location cue sent to the map server depends on the
localization technology advertised by the server. The map
servers accept location cues, localize the device within their
map, and return the results to the client. The client then
selects the best one by comparing these results with its own
IMU (Inertial Measurement Unit) sensors or local SLAM
(Simultaneous Localization and Mapping) algorithm [30].
The most plausible result is returned to the application.

Tile rendering: Each map server would expose a visual
representation of its map data as 2D images, 3D meshes or
other forms. The client would download these representa-
tions from multiple discovered map servers and stitch them
together before showing them to the user. For example, stitch-
ing together map data in different coordinates and projection
systems can be done using manual correspondences between
maps (e.g., MapCruncher [8]).

5.3 Security and privacy model
Unlike in the case of a centralized map, map providers in
OpenFLAME can control access to their data and services
in fine-grained ways as they can implement separate au-
thentication processes for each of the services and map data.
User-level control – A map server covering a university, for
example, may only serve users who can authenticate with
the university’s email address. This ensures users who are
not from the university cannot get fine-grained map data.
Service-level control – A map server, for example, may pro-
vide its tile service to a large set of users so they can view
the map. However, it may choose to provide localization ser-
vice only to a small set of users who are supposed to have
physical access to the place. Application-level control – A
university might provide localization service only if it comes
from the campus navigation application and trust that the
application has implemented its own way of authenticating
users.

6 CONCLUSION
In this paper we present the need for a federated spatial
naming system, or a map, to enable emerging Spatial Web
applications. We then discuss how location-based services
that are primarily utilized by today’s spatial applications can
be provided on top of a federated map. We hope that this
paper encourages the systems community to think about
the underlying infrastructure required to enable the next
generation of the Web.
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