
CollabChain: Blockchain-backed Trustless
Web-based Volunteer Computing Platform

Sagar Bharadwaj KS?, Samvid Dharanikota?, Adarsh Honawad?, and K
Chandrasekaran

National Institute of Technology Karnataka, Surathkal, India
{sagarbharadwaj50, samvid.dharani, adarsh2397}@gmail.com,

kchnitk@ieee.org

Abstract. Volunteer computing is a distributed computing model in
which individuals in possession of computing resources volunteer to pro-
vide them to a project. Owing to the availability of billions of computing
devices all over the world, volunteer computing can help solve problems
that are larger in scale even for supercomputers. However, volunteer com-
puting projects are difficult to launch and deploy. These platforms also
force volunteers to trust the authenticity of the project owner and to
blindly accept credits allotted to their contribution by the project owner.
As a result, very few high-profile trusted projects are able to sustain in
this system. In this paper, we present an incentivized web-based volun-
teer computing platform that functions as a market place to buy and
sell computing power. Launching a project on the system and contribut-
ing to an existing project happens over the browser without the need
for a specialized software or hardware. We introduce the application of
blockchain to remove the need to trust any other party in the system.
We also present a prototype implementation and solve NP-Problems as
examples using the proposed prototype.

Keywords: Volunteer Computing · CPU Cycle · Blockchain · Web · Browser

1 Introduction

Volunteer computing refers to a distributed computing solution where users
(called volunteers) contribute their computing power to large-scale projects re-
quiring high throughput and longer computation time. These large-scale projects
are usually, but not limited to, research problems in the areas of medicine, me-
teorology, mathematics and so on. Some examples are Folding@Home [4], that
simulates protein folding, computational drug design, and other types of molec-
ular dynamics and Einstein@Home [3] that searches for radiations from neutron
stars.

Approximately 10 petaflops of computing power are available from volunteer
computing networks [15]. Anderson et al. [9] provide further statistics on the
potential of volunteer computing.

? Contributed equally



2

In a general volunteer computing model, volunteers pick up tasks (processes)
given by a host, perform necessary computation, and submit the output back to
the host. Most volunteer computing architectures today are usually supported
by unpaid volunteers. They are ’volunteers’ in the truest sense. These models can
also be based on ’volunteers’ ’selling’ their resources, and the host ’buying’ them.
For example, a host that requires high-throughput computation can request a
volunteer to run the computation in exchange for payment made to the volunteer.
Such an architecture is feasible due to the fact that they do not have to invest
in expensive cloud servers or any other computation platform, but can ’buy’
computing resources for smaller amounts on a per-process basis. This also allows
for systems to accumulate monetary reward during their idle time.

The Blockchain in its basic sense is a distributed ledger that is replicated
on all nodes in a distributed system. As the name suggests, it consists of a
’chain’ of blocks, that are linked to each other. These blocks contain transaction
records and associated data. The hash of the contents of a block is recorded
in the following block, and this forms the ’link’ between the two blocks. This
essentially makes the ledger immutable and append-only, because, tampering
of data in a certain block would require re-computation of its hash, and the
subsequent modification of this hash in the following block, and this propagates.
Generation of these blocks by nodes in the blockchain network is restricted by
’consensus’ mechanisms. Hence tampering with the blockchain and creating new
blocks is not feasible.

Nodes need only a pair of public and private keys to participate in the
blockchain network. This implies that they do not have to use any personal data
such as their name, for instance, to create an identity in the network, preserving
their privacy.

The blockchain is replicated over all nodes in the P2P network, and its state
is made (eventually) consistent over all nodes by exchange of state-update infor-
mation with its peers. The lack of a central node/server to maintain and enforce
the current blockchain state ensures a decentralized environment.

Properties of blockchain such as immutability, privacy and decentralization
make it an attractive solution to many development problems that require the
same properties. It was initially used as the ledger for the famous Bitcoin [11],
where the blockchain stored Bitcoin transaction records. Blockchain has since
evolved, and saw applications in many domains not restricted to cryptocurren-
cies, such as healthcare, Internet of Things (IoT), cloud computing and more.

This paper proposes a novel architecture of browser-based volunteer com-
puting platform that employs blockchain to provide a trusted environment for
the volunteers and incentivizes them to devote their computational resources.
Without the need of any specialized application, except just the web-browser
that is pre-installed on almost all commercially available personal computers,
anyone can deploy the platform and use it with ease.

The paper starts with an introduction to volunteer computing and blockchain
concepts in general. The following section explores other research works related
to volunteer computing. We then define the design goals that our volunteer



3

computing platform must implement in the third section. The fourth section
describes the architecture of our volunteer computing platform along with a
sample implementation. The fifth section explains the flow of control through
whilst using the platform. The final section displays the results of some our tests
and drawbacks of our architecture.

2 Related Work

Many researchers and organizations have attempted to create browser-based
volunteer computing platforms with varying levels of complexity that cater to
general or specific use-cases. The earliest popular volunteer computing project
was perhaps SETI@home (Search for Extra Terrestrial Intelligence) proposed
by Anderson [8]. The project consisted of a high frequency feed from a radio
telescope whose signals could be analysed to determine the presence of extra
terrestrial life. Although the project failed to identify extra terrestrial life, it
paved the way for Public-resource computing. The same group launched a vol-
unteer computing platform called BOINC (Berkeley Open Infrastructure for
Network Computing) [7]. It was the first platform that allowed participants to
volunteer for a number of scientific projects that had massive computation re-
quirements. BOINC projects use a centralised server complex centered around a
relational database that stores descriptions of applications, platforms, versions,
workunits, results, accounts, teams, and so on. The BOINC project has a large
entry barrier for addition of projects. Around 30 projects use BOINC today [6].
Every project must maintain a server complex containing a database server and
a web server. BOINC is thus only used to contribute computation power and
seldom to request it. The volunteers will also have to spend significant amount
of time downloading and setting up the BOINC client. BOINC is also based on a
trusted ’credit’ system. The volunteers trust the project host and receive credits
after completing their share of work. Our design removes the barrier of entry for
addition of new tasks, decentralizes the system and also eliminates the need for
trust between exchanging parties.

Golem [5] is an incentivized computing market place with based on blockchain.
However the tasks that the volunteers on the system can perform are limited to
computations such as computer graphics rendering and certain machine learning
algorithms. Thus the computations that can be performed are not generic and
the platform cannot be used to request computation power for generic tasks.

BOID [1] is another blockchain-backed social computing platform where vol-
unteers get paid in custom BOID cryptocurrency tokens for the resource that
they contribute. It is currently in Alpha phase.

Sarmenta and Hirano [13] have proposed a Java based applet, Bayanihan, for
a web-based volunteer computing system that consists of worker and watcher
clients that connect to a server (via the URL in the browser) that serves ’prob-
lems’ to the volunteers (clients). Note that Bayanihan is only a framework that
can be used to build platforms on top of it with the mentioned underlying ar-
chitecture. In contrast, our paper is a full-fledged platform.



4

Ong et al. [12] proposed a volunteer computing platform using a client-broker-
host model, based on Java. Clients submit tasks that are distributed to the hosts
via the broker, which handles task collection and distribution. Similar to our
architecture, the hosts are incetivized by the client based on the amount of data
they process/compute on.

Specific to image processing computation, a client-server model is proposed
by Zorrilla et al. [16] where the clients are users on a social media service, who
run a given algorithm on images from the social media provided by the server.
The platform uses JavaScript, similar to our architecture, and spawns threads
to perform computation in the browser in the background. It is worth noting
that the more recent works on browser-based distributed computation have used
JavaScript over Java. One key reason is due to the lack of the need of a separate
Java Virtual Machine on JavaScript-based browsers, that needs to be installed
on a system to view Java-based web-pages.

Turek et al. [14] also proposed a volunteer computing approach, based on
a similar client-server model, for a specific use-case: Web-crawling. Servers first
download the content of the web-pages required to be crawled. They then send
the content to volunteers and collect the results computed by them. The vol-
unteers initially obtain the algorithm to be run on the web-page content. They
then query the server to obtain tasks. On receiving the content, they process it
with the given algorithm and return the information to the server.

Although not a volunteer-computing application itself, Merelo-Guervós and
Garćıa-Sánchez [10] proposed a browser-based distributed computing model for
evolutionary computation.

3 Design Goals

Figure 1 shows the architecture of the volunteer computing platform that we
have built.

We ensure that the architecture we have proposed adheres to the following
design goals:

– Easy Deployment : Deployment refers to the steps needed to be taken to
make a software system available for use. We aim at building a system which
involves minimum effort to deploy. Existing volunteer computing platforms
generally have a large deployment overhead, especially for the party seeking
computation resources - the task submitter in our case.

– Decentralization: Most volunteer computing platforms depend on a central
entity to monitor executors, collect results and distribute credits. This means
the system is prone to single point of failure problems. We wish to remove
centralized entities and make sure there is no single point of failure or a
potential bottleneck in the system.

– Platform independence: Software systems in the volunteer computing do-
main are dependent on hardware resources and the underlying platform.
Authors have developed clients separately for different platforms. However,



5

Fig. 1. Architecture

we propose a system that is independent of the platform and underlying
hardware.

– Trustlessness: All volunteer computing systems existent today are reliant
on the assumption of presence of trust between participating entities. Sub-
mitters rely on executors to not attack the system and executors trust the
submitters to distribute unbiased credits proportional to the amount of com-
putation. This trust model is justified as long as nothing of real value is
exchanged. However, such an assumption cannot be made when it comes to
an incentivized platform. We propose a system where the concept of trust-
lessness is achieved using blockchain.

– Privacy : Privacy refers to a one’s choice of withholding private information
about oneself from a system. The system developed, although involves in-
centivization must be capable of payments without the need to discover the
individual’s personal credentials.

– Elimination of software and hardware overhead : Existing volunteer comput-
ing platforms mandate the Task submitters to maintain dedicated hardware
to sustain the system. We wish to eliminate these software and hardware
overheads.

– Performance: The system should ideally provide a linear increase in perfor-
mance with respect to the number of executors.

– Scalability : The system should be scalable with respect to the number of
nodes as well as the number of tasks it can handle.

The current architecture that our platform uses implements almost all the
mentioned design goals to a great extent. However, scalability and decentraliza-
tion are two design goals that can be improved upon in further works.



6

4 Proposed Architecture

Two types of nodes participate in the underlying P2P network:

– Task Submitter : Any node in the system that wishes to submit a task to the
system

– Task Executor : Any node in the system that wishes to execute a task sub-
mitted to the system. It contributes computing resources to the system and
gets incentivized for it.

Note that the executors in our architecture are not true ’volunteers’, i.e., they
seek some gain from the work that they have contributed. Henceforth, the Task
Submitter will be referred to as ’Submitter’ and the Task Executor as ’Executor’.

4.1 Coordinator

A coordinator node is also present in the network along with the Submitters
and Executors. Nodes initiates their connection to the network by connecting to
the coordinator. Every peer to peer system requires a bootstrap connection to a
seed node through which it discovers other peers in the system. The coordinator
in our system acts like the seed node. The coordinator has two tasks:

– To maintain a database of all the projects utilizing the volunteer computing
platform. This enables any Executor node to discover all projects and choose
the project of its liking.

– To act as a seed node and let peers discover themselves to initiate connections
among themselves. The coordinator acts as a brokering connection initiator.

After the nodes have connected to the coordinator, which only acts like a
bootstrapping seed node, they no longer need to communicate with the coor-
dinator, except for heart beats to confirm the node is still alive. The Executor
node obtains the ’peer ID’ (can also be thought of as a ’task ID’) of the Submit-
ter of a particular task through the coordinator’s database. Note that the same
Submitter node can have different peer IDs for different tasks that they submit
to the network, i.e., the peer ID is unique for a task. This ensures brevity in the
number of IDs that the coordinator has to store in memory.

Once the Executor has discovered the corresponding Submitter, it does not
communicate through the coordinator. Instead, a P2P connection is established
between the Submitter and the Executor directly. The Submitter generates a
unique URL for its task, and the Executor establishes this connection by ac-
cessing the URL in a browser. The task and the its inputs are sent through this
connection.

The decoupling of the coordinator from the task of channeling input to ex-
ecutors ensures that the coordinator is no longer the bottleneck. It inadvertently
implies that the connection established between the submitter and executor re-
mains intact in spite of failures at the coordinator’s end. Such bottlenecks and
single point of failure problems, which are prevalent in most existing volunteer
computing architectures, are avoided here.



7

4.2 Task Submitter and Executor

The Submitter creates a task to be distributed along with a set of inputs on
which the task/process is to be run, and then submits it to the network. The
task comprises of a JavaScript method which conforms to a specified format of
input parameters and return values.

Once the connection between the Submitter and Executor is established as
stated above, the Submitter provides inputs to the Executors in a batch round
robin fashion. It sends a configurable batch of inputs at once to each Executor.
The task of dividing an input into independent units is delegated to the user.
This decision is made as user of the system is the only actor who can decide the
best execution plan for a task.

The Executors complete their tasks independently by executing a procedure
defined by the Submitter on their assigned inputs. The output of the Execution,
however, is not sent directly to the Submitter. This is to avoid two types of
malicious node behaviour:

– Withdrawing payments - The Submitter can choose not to proceed with
paying the Executor even after it receives valid outputs.

– Forgoing legitimate computation - The Executor can avoid computing out-
puts using the given task and instead send garbage output to the Submitter
in hopes of getting paid.

The output computed by the Executor is sent to the blockchain to prevent
the above behaviour. In addition to sending the task method and set of inputs
to the Executor, the Submitter also sends a set of ’pre-computed’ outputs to
the smart contracts. The following sections explains the role of blockchain and
smart contracts in detail.

4.3 Blockchain Incentivization Mechanism

The blockchain ensures the following:

– Payment for the volunteers for successful completion of work
– Honest behaviour of submitters and volunteers

Smart contracts are used to realize the same.
The Submitter, when it creates a task, is mandated to compute the outputs

for a randomly chosen subset of the inputs. This subset is very small compared to
m, the size of the inputs. These outputs are computed on a per-batch basis, as in,
one set of outputs per batch. The batch size determines the degree of legitimate
values the Submitter gets. It then invokes the smart contract, providing it with
the vector of hashes of the computed outputs as a parameter, along with the
price it is ready to pay. The Submitter also makes the payment to the smart
contract. These hashes are recorded on the blockchain.

The Executor, on successfully completing the computation, provides the vec-
tor of hashes of outputs to a smart contract method. The smart contract then



8

verifies if the expected outputs (computed values from the Submitter) are present
in the outputs given by the Executor. If so, the smart contract then releases
payments to the executor and the executor then sends over the outputs to the
Submitter directly via its connection.

Since the Executor has no way to know which input of the batch given to
it has its output pre-computed, it has to execute all of it to get paid, thereby
ensuring that the executor will not submit garbage outputs for verification and
falsely be rewarded.

The batch size directly determines the probability of the Submitter receiving
a valid output. If the batch size is small, there the number of inputs per batch
decreases, and the Submitter would have to spend more of its computing power
to pre-compute the outputs at the benefit of receiving more valid outputs. Con-
versely, if the batch size is large, then the Submitter would have to perform lesser
computation at the risk of receiving wrong outputs from a malicious Executor.

S.
No.

Type Hardware %age
Batches

Browser Time

1 Serial Intel Core i7-4510U CPU 100% Mozilla Firefox
64.0

198.64 seconds

2 Serial Intel Core i7-4510U CPU 100% Google Chrome
71.0

88.53 seconds

3 Distributed
Intel Core i7-4510U CPU 63.63% Google Chrome

71.0
56.95 seconds

Intel Core i5-6200U CPU 36.36% Google Chrome
71.0

4 Distributed
Intel Core i7-4510U CPU 54.54% Google Chrome

71.0 52.06 seconds
Intel Core i5-6200U CPU 36.36% Google Chrome

71.0
Qualcomm Snapdragon
650 hexa-core (4x1.4GHz
+ 4x1.8GHz)

9.09% Firefox (An-
droid 6.0)

Table 1. Run-times with different browsers

5 Flow of Control

1. The submitter joins the network by connecting to the coordinator (P2P
Bootstrap).

2. The submitter writes the task to be executed in the given format and also
prepares the set of inputs (and also divides them into assignable batches) on
which this is supposed to be run.

3. The submitter then executes the task on a subset of these batches and obtains
output.

4. The submitter then decides the reward he is willing to pay, and invokes
the smart-contract to record the pre-computed outputs (a hash of the pre-
computed outputs, for practical purposes; one hash is computed for one



9

batch) along with the task ID and reward, and a payment is made to the
contract. The task ’function’ is then given to the coordinator.

5. The executor also joins the network by connecting to the coordinator (P2P
Bootstrap).

6. The executor then picks a task from the list of tasks displayed to it by the
coordinator.

7. Once the executor picks a task, its connection with the coordinator is termi-
nated. A connection is initiated directly with the corresponding submitter.

8. The submitter then provides the executor with a few batches of inputs cor-
responding to that task that are still not computed.

9. The executor runs the task function on these inputs and computes the set
of outputs.

10. The executor then provides the hashes of the computed batches to the same
smart-contract.

11. The smart-contract compares the hashes that have been provided by the
submitter (pre-computed outputs) with the hashes given to it by the execu-
tor. If all the pre-computed outputs’ (in the range of batches given to that
executor) hashes are present in the list of hashes given by the executor, the
smart-contract then pays the executor with the reward amount as specified
by the submitter.

12. If the executor is still connected to the submitter, a new set of batches are
given to the executor and the above steps repeat.

13. If the hashes do not match in step 11, then no payment is made as the
outputs computed (some or all) by the executor are wrong.

6 Results

To test our system, we executed a simple scenario where the submitter wants
to solve the integer factorisation problem. Factorisation does not have a known
polynomial solution and is thus an NP-Problem. The problem of finding all fac-
tors of n can be distributed among executors by dividing the range of numbers
having possible factors (1 to

√
n) into sub ranges. The executors can then launch

the factor searching process in their own sub-ranges. For the purpose of demon-
strating preliminary results, we make an attempt at factorising a 21 digit (in base
10) number with 67 bits. The submitter function is a simple 8 line JavaScript
code which is run in a distributed fashion by all executors in parallel. We have
divided our input into sub-ranges as follows:

{
"Input": [
{
"start": 1,
"end": 100000000,
"num": 123456789123456800000

},
{



10

"start": 100000001,
"end": 200000000,
"num": 123456789123456800000

}, // and so on
}

Our implementation also provides sample scripts to generate input batches in
the above format. The following is the code for the ’task’ given to the executors:

factor = [];
for(var k = input.start; k <= input.end

&& k * k <= input.num; k++) {
if(obj.num % k == 0) {

factor.push(k);
factor.push(obj.num / k);

}
}
return {Factor: factor};

We record several observations in table 1.

Clearly, distributing the work over several computers reduced the computa-
tion time owing to parallel execution. The time required to finish computation
decreases inversely with the number of devices. An interesting observation is that
the Chrome’s V8 engine runs the given JavaScript code faster than the Mozilla’s
Gecko Engine. We also used a mobile device running the Firefox browser. The
Android 6.0 mobile device obviously took more time than a laptop computer,
but it was nevertheless able to partake in the voluntary computing platform
and yield results. This shows that even mobile devices can participate in the
platform.

We also took up the hashing problem to demonstrate our system. The prob-
lem is similar to cryptocurrency mining where the executors compute hashes for
nonces in the given range. The hash function considered is a Javascript imple-
mentation of the String.hashCode() function in Java. The results are shown in
Figure 2. Two Gigahashes were computed in total in total by the system. The
nonces required to generate two Gigahashes were divided into 100 subranges. 10
of these subranges were grouped together into a batch. Thus there were a total
of 10 batches.

Figure 3 shows how the hash rate of the system varies with respect to the
number of executors. As can be seen from the chart, the increase in performance
is not always linear with respect to the number of executors. There are regions in
the graph where the hash rate remains constant even when the number of execu-
tors increases. For instance, the hash rate does not increase when the number of
executors increases from 5 to 9. The reason for this behavior is explained by the
distribution of the batches given in Table 2. A total of 10 batches is distributed
between all the available executors. The runtime of execution is measured as the
time elapsed between the first executor joining the system and the last executor
finishing the computation. As a result, the hash rate is limited by the last execu-
tor to finish. Thus, it is dependent on the the maximum number of batches given



11

Fig. 2. Running Times for the hashing problem

Fig. 3. Increase in Hash rate with number of executors



12

Executors
Distribution of batches
(number of executors X batches)

Maximum Batches

1 1 X 10 10

2 2 X 5 5

3 (1 X 4) + (2 X 3) 4

4 (2 X 3) + (2 X 2) 3

5 (5 X 2) 2

6 (4 X 2) + (2 X 1) 2

7 (3 X 2) + (4 X 1) 2

8 (2 X 2) + (6 X 1) 2

9 (1 X 2) + (8 X 1) 2

10 (10 X 1) 1

Table 2. Distribution of Batches among executors

to an executor. As shown in Table 2, the maximum number of batches given to
an executor remains 2 even when the number of executors increases from 5 to
9. However, there is a slight increase in the hash rate when executors increase
from 5 to 9. This is because, only the fastest executors finish fast enough to
fetch another batch from the submitter. Thus in case of 5 executors, the fastest
4 executors fetch the next batch. The runtime is limited by the slowest of the
fastest four. In case of 9 executors, only the fastest executor fetches the next
batch. Thus, it completes faster.

7 Analysis

Design Goal Technology Used

Trustlessness Blockchain

Easy Deployment Browser

Decentralisation PeerJS

Platform independence Browser

Privacy Ethereum / Metamask

Performance Architecture

Scalability Architecture

Table 3. Design Goals

In this section we explore how the design goals proposed in Section III were
met. Table 3 summarizes the technologies used to meet these design goals.

– Easy Deployment : The system is easy to deploy. The user will need nothing
more than a browser to contribute or request computing power. In order to
get incentivized, setting up an Ethereum wallet is required. An Ethereum
wallet can be set up in a very short time with the help of tools such as the
Metamask wallet browser extension.

– Decentralisation: Our design aims at eliminating any form of centralization.
The purpose of the volunteer computing system is to impede dependency
on a central entity for both computation and incentivization purposes. Our



13

current design uses a coordinator that acts a seed node in the Peer to Peer
network, which is inevitable. After establishment of a connection between the
submitter node and executor nodes, the coordinator is no longer involved and
a direct P2P connection is established between the nodes.

– Platform independence: Our design and implementation is independent of
the platform as it runs within the execution environment of a browser. It
is only limited by the availability of a web-browser on a device. Any device
that can run a browser can contribute computational power including mobile
phones, tablets and Desktops.

– Trustlessness: Existing Volunteer computing systems are all dependent on
trust. They generally do not verify the outputs generated by volunteers.
There is little reason for volunteers to submit erroneous values in an un-
incentivized system. The volunteers also trust the task owner’s authenticity.
However, in an incentivized system on the public network, such a trust based
model cannot be used. A node may simply submit erroneous values to get the
incentive rewards. A simple verification is not sufficient as the task’s owner
may refuse to compensate the volunteer in spite of receiving valid/correct
outputs. In such cases, reliance on a trusted third party who can mediate
between the task submitter and the task executor seems necessary. However,
our design eliminates the existence of any trusted entity. The execution and
incentivization takes place without the need for the involvement of trust
using blockchain.

– Privacy : The system does not require personal data. Ethereum accounts
associated with a person do not have personal data attached to them, which
means our system preserves user’s privacy.

– Elimination of software and hardware overhead : Our implementation does
not require additional software or hardware set up. There is no need to set up
an Ethereum client or an Ethereum node. A browser and a simple browser
based Ethereum wallet would be sufficient to participate in the system.

– Performance: The performance of the system increases with the number of
executors as shown by the results.

– Scalability : The system is scalable with respect to both the number of unique
tasks it can handle and the number of nodes. The system has no bottleneck
as the connection to the coordinator persists only before a direct connection
is established between the task submitter and the task executor.

– Minimum user prerequisites: There are no prerequisites for a task executor
to contribute computational power. A task submitter can write the task in
plain JavaScript. The system does not mandate any special syntax and thus
the task submitter need not be familiar with the system to use it. This is
generally not the case with most other volunteer computing platforms.

Note that the submitter is required to stay on-line even after delegating the
process function and the inputs to the executors in order to obtain computed
outputs from the executor. This could be a possible future work direction to
remove this constraint.



14

8 Conclusion

In this paper we have proposed a novel approach of leveraging blockchain tech-
nology to build a trustless volunteer computing platform. The platform is com-
pletely browser based making it convenient for both the task submitters and
executors. This removes the requirement of any additional software or hardware
as is necessary in traditional volunteer computing solutions. A proof of concept
of the proposal has also been implemented and tested using the open source
blockchain, Ethereum. The implementation has been open sourced [2]. The plat-
form also supports incentivization as opposed to traditional solutions because of
the trustless and immutable nature of blockchain.

References

1. BOID. https://www.boid.com/
2. CollabChain. https://github.com/SagarB-97/CollabChain
3. Einstein@Home. https://einsteinathome.org/
4. Folding@Home. https://foldingathome.org/
5. The Golem Project. https://golem.network/doc/Golemwhitepaper.pdf (November

2016, Accessed: 2019-01-18)
6. BOINC. https://boinc.berkeley.edu/ (Accessed: 2019-01-18)
7. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on.
pp. 4–10. IEEE (2004)

8. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@ home:
an experiment in public-resource computing. Communications of the ACM 45(11),
56–61 (2002)

9. Anderson, D., Fedak, G.: The computational and storage potential of volunteer
computing. pp. 73– 80 (06 2006)

10. Merelo-Guervós, J.J., Garćıa-Sánchez, P.: Designing and modeling a browser-based
distributed evolutionary computation system. In: Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary Compu-
tation. pp. 1117–1124. ACM, New York, NY, USA (2015)

11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
12. Ong, T.M., Lim, T.M., Lee, B.S., Yeo, C.K.: Unicorn: Voluntary computing over

internet. SIGOPS Oper. Syst. Rev. 36(2), 36–51 (Apr 2002)
13. Sarmenta, L.F., Hirano, S.: Bayanihan: Building and studying web-based volunteer

computing systems using java. Future Generation Computer Systems 15(5-6), 675–
686 (1999)

14. Turek, W., Nawarecki, E., Dobrowolski, G., Krupa, T., Majewski, P.: Web pages
content analysis using browser-based volunteer computing. Computer Science
14(2)), 215–230 (2013)

15. Wikipedia contributors: Volunteer computing — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Volunteer computing&oldid=859975321
(2018, Accessed: 2019-01-18)

16. Zorrilla, M., Martin, A., Tamayo, I., Aginako, N., Olaizola, I.G.: Web browser-
based social distributed computing platform applied to image analysis. In: Cloud
and Green Computing (CGC), 2013 Third International Conference on. pp. 389–
396. IEEE (2013)


