
SolveIt : An Application for Automated Recognition and
Processing of Handwritten Mathematical Equations

Sagar Bharadwaj KS*
Department of

Computer Science & Engineering
National Institute of Technology

Karnataka, Surathkal
Email: sagarbharadwaj50@gmail.com

Vilas Bhat*
Department of

Computer Science & Engineering
National Institute of Technology

Karnataka, Surathkal
Email: vilasnitk19@gmail.com

Arvind Sai Krishnan*
Department of

Computer Science & Engineering
National Institute of Technology

Karnataka, Surathkal
Email: arvindsaikrish@gmail.com

Abstract—Solving mathematical equations is an integral
part of most, if not all forms of scientific studies. Researchers
usually go through an arduous process of learning the nuances
and syntactic complexities of a mathematical tool in order to
solve or process mathematical equations. In this paper, we
present a mobile application that can process an image of a
handwritten mathematical equation captured using the device’s
camera, recognise the equation, form the corresponding string
that can be parsed by a computer algebraic system and display
all possible solutions. We aim to make the whole experience of
experimenting with equations very user friendly and to remove
the hassle of learning a mathematical tool just for
mathematical experimentation.

We propose a novel machine learning approach to
recognise handwritten mathematical symbols achieving a
99.2% cross validation percentage accuracy on the kaggle math
symbol dataset with reduced symbols. The application covers
useful features like simultaneous equation solving, graph
plotting and simple arithmetic computations from images.
Overall it is a very user friendly equation solver that can
leverage the power of existing powerful math packages.

Index Terms - CNN, Deep Learning, Mathematical expres-
sion recognition, Symbol recognition, SymPy

I. INTRODUCTION

Complexities involved in Human Computer Interaction
(HCI) are reducing at an extraordinary rate and computers
are gradually catching up with the nuances, irregularities and
imprecisions of the real world to enable an easier interaction.
Tremendous amount of research has gone into identifying
and classifying some irregularities of the real world
including handwriting recognition, natural language

. * S. Bharadwaj, V. Bhat and A.S. Krishnan contributed equally to this
work. Authors are ordered by lastname.

processing, face detection and so on. We have progressed
leaps and bounds in enabling computers to understand our
error prone but natural inputs, process them and produce
outputs with a factor of usefulness. The input a computer
takes has grown from the tedious punched cards to mouse
clicks to touch. We are now progressing towards an era
where no dedicated devices are required to instruct a
machine to compute. We can now convey our instructions
using natural languages and images. Computers can now
‘listen’ and ‘see’ like our fellow humans while still retaining
their superior computational power. There has been
humongous research on leveraging such new found
computational capabilities and streamlining them into
specific use cases. One use case that we explore in this paper
is solving handwritten mathematical equations.

We have made an attempt at simplifying the interaction
between humans and computers with respect to processing
and solving mathematical equations. Mathematical equations
are an integral part of most technical research. Researchers
currently rely on the process of leveraging existing math
engines and computer algebraic systems to solve or plot
mathematical equations and expressions. However, in order
to leverage existing solutions, one must be aware of the
syntaxes and complexities of the chosen tool. Going through
such an ordeal for some simple and ‘throw away’ equations
is not desirable. Technical assignments, projects and
research involves a lot of mathematical analysis that require
one to experiment with a lot of throw away equations and
expressions. Entering all such equations and expressions into
the system requires lots of manual assistance, time, human
intervention and an expertise in the chosen mathematical
tool. A natural solution to this problem would be to develop
a user friendly tool that would capture the image of a
mathematical equation, recognise the equation embedded in
it and present the user with the required solution. This is
precisely the tool developed and described in this paper.

There are currently many production level math analysis

2018 4th International Conference for Convergence in Technology (I2CT)
SDMIT Ujire, Mangalore, India. Oct 27-28, 2018

978-1-5386-5232-9/18/$31.00 ©2018 IEEE 1

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

tools available in the computing world. However, more the
number of features in a mathematical tool, the higher is the
difficulty of leveraging its advantages. Our tool can be easily
integrated with any available mathematical tool because of
the highly modular approach that we have used when
developing the application. The power of our application is a
function of the power and features of the integrated
mathematical tool.

The application presented can be easily extended to other
use cases. Some possible use cases may include automating
verification of mathematical claims in technical documents;
automating exam paper evaluations; conversion of
handwritten equations into a desired typesetting format like
Latex for inclusion in a technical document; verifying
mathematical claims on online forums and so on.

Research on recognition of handwriting has been at the
forefront in the recent years. Numerous methods are
explored to enable computers to recognise and classify
handwritten symbols. The methods are broadly classified
into ‘online’ classifiers and ‘offline’ classifiers. Online
classifiers perform classification based on the movements of
the pen tip observed when the symbol was written. This
classifier has a much higher accuracy and is easier to model
because of the presence of better clues. However, it requires
input devices that closely simulate a ‘pen and paper’
experience and is therefore not suitable for an end user based
application who may not have access to such devices.
Offline classifiers on the other hand begin the classification
process once the entire symbol has been written. This means
that the creation of image and its analysis can happen
separately which is the desired behaviour. However, offline
analysis modelling is relatively difficult and the end results
are imprecise. There are various methods explored in the
scientific community for offline processing. Some of them
involve image processing techniques while some work based
on manual feature extraction. The most pursued method
however is neural network based learning. A well designed
neural network is known to give a very high accuracy in
classifying symbols.

The presented application uses a custom designed
Convolutional neural network (CNN) to classify symbols.
The CNN architecture we built gave a cross validation
accuracy of 99.2% on the kaggle math symbol dataset with
reduced symbols.

Our application can presently solve simultaneous
equations, plot graphs for expressions of any given degree
and can also act as a simple calculator for handwritten
arithmetic expressions. Each of these features can be used by
providing input either as a formatted string of the equation
or also as an image which contains the equation. The
application also has small snippets acting as tutorials for the
user to leverage all the functionalities of the application
effectively. The user can also edit the equation in cases
where the server fails to recognise and segment

the image as the user intended. We also present a novel
workflow and an application pipeline for a fully developed
and functional Handwritten Mathematical equation solver.

II. RELATED WORK

There has been considerable amount of work done in the
field of mathematical expression recognition for almost three
decades now since the 1990s. Chan et al. [1] have
summarised and compared the various techniques present for
mathematical expression recognition. Mathematical
expression recognition is divided into two major stages:
symbol recognition and structural analysis. Symbol
segmentation further involves symbol segmentation and
recognition of segmented symbols. The former can be
achieved using variety of methods like finding connected
components, recursive horizontal and vertical projection
profile cutting [2][3],recursive X-Y cut [4], progressive
grouping algorithm [5] and the latter is performed by various
methods like template matching [2][3], structural [6] and
statistical [7] approaches as explained in Chan et al. [1].
Mathematical expression recognition is of two main types,
online and offline. Former being symbol recognition while
user gives input and the latter is symbol recognition after the
user gives input. Zanibbi et al. [8] gave encouraging results
using tree transformation which constructs a tree with
symbols inside nodes to recognise the mathematical
expressions. Garain et al. [9] exploits the neuromotor
characteristics of handwriting for symbol recognition using a
detailed feature extraction procedure. LaViola et al [10]
came up with a system for the creation and exploration of
mathematical sketches done on the computer.

The latest work in this field upto 2011 is covered by
Zanibbi et al. [11] and mainly focuses on online recognition
of math expressions sketched on the computer. Research in
the area of math symbol recognition has flourished after the
advent of deep learning. Mouchere et al. [12] demonstrates
very promising results in recognition of online handwritten
mathematical expressions but also ascertains the fact that
handwritten equations remain a difficult structural pattern
recognition task.

III. APPLICATION DEVELOPMENT

We have used a simple server client architecture that can
serve as a proof of concept for the entire pipeline. The
source code for the application is openly available1. The
request originates at the client side and most processing
happens at the server. The server then responds with either a
graph or a solution to the scanned equation based on the
user’s request.

The flow of data in the pipeline begins with the client
application making a request to the server and posting the

1. https://github.com/IEEE-NITK/HES-Project

2

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

Fig 1: Pipeline style architecture of the application

image of the mathematical equation captured using the
device camera. Figure 1 shows a schematic representation of
our pipeline. The user is also provided with an option to
make the request using a fully formatted text and decide not
to leverage the image recognition capabilities of the
application.

The server receives the image and runs a sequence of
preprocessing algorithms as mentioned in section 5.1. The
segmentation algorithm from section 5.2 is executed on the
preprocessed image. Each segmented image is then sent to
the the symbol classifier described in section 5.3. The
recognised symbols are strung together to form an equation
which can be parsed by the math engine. The math engine
used in our application is SymPy2. The solution obtained
from SymPy is then sent as a response to the client
application and is displayed on the user interface.

A similar flow is observed even in the case of ‘text’
based requests. However, server side image processing and
symbol recognition steps are skipped, shortening the request
response cycle time as a result.

Our application currently supports solving polynomial
equations of any degree, simultaneous equations, plotting
graphs for expressions of any degree and a simple calculator.
Each of these options can take two forms of input. The
equation can either be supplied as text which is directly in
the required format or it can be posted as an image. The
server chooses the appropriate pipeline based on the input
method used and responds with a solution or graph as
requested by the user. After capturing the image, the user
also gets an intermediate feedback from the server with the
final string of the recognised equation. The user can modify
the equation in cases where the server fails to recognise
correctly and request for the final solution.

Our design can support low end device hardware on the
client side as most of the processing is done on the server
side. The design is highly modular. Any of the components
can be replaced or upgraded with little or no changes in the
implementation of other components. We utilized the high
modularity of our design to incrementally improve the
symbol classifier and image segmentation

2. https://www.sympy.org

algorithms independent of each other. The high modularity
of the design also means that we can plug and unplug the
math engine used by making appropriate changes in the
‘Equation String formation’ layer. Supporting additional
functionalities and including support for newer equation
families like differential equations would just require
changes on the Equation string formation layer. The other
layers’ implementation can remain intact.

However, this design comes with certain disadvantages.
The current design is not scalable as the server cannot accept
and process many connections. This is due to the
undesirably large request-response cycle. As the user base
increases, the server’s request queue grows and so does the
response time. This would degrade the application’s
performance. However, the current pipeline was only built
as proof of concept without scalability in mind. It is feasible
to port the entire pipeline to the client side and it must be
done to support a sizeable user base.

IV. TECHNOLOGIES USED

A. Front end Application

The front end application was built using the official
Integrated Development Environment for the Android op-
erating system - Android Studio. Enough importance and
time was invested on making the design as user friendly as
possible. Android’s Volley library was used to make HTTP
requests to the server. Volley is a library that is built to make
the process of setting up HTTP connections easier and to
make HTTP requests faster. Existing modules that enable
making multi part HTTP requests were leveraged to POST
images to the server.

B. Backend Server and interactions with python environment

The backend server is written in Node.js. Node.js is an
open-source, cross-platform JavaScript run-time
environment that executes JavaScript code server-side. Most
of the preprocessing and recognition logic is implemented in
Python.

3

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

C. Image Processing

We utilised OpenCV’s APIs to perform preprocessing
steps on the image received by the server. OpenCV is an
open source library written exclusively for real time
Computer Vision functionalities. The image is denoised and
binarised as initial preprocessing steps. Binarisation of the
image is done using the algorithm mentioned in section 5.1.
The processed image is then passed to our own segmentation
algorithm. The segmentation algorithm is described in
section 5.2. The segmentation algorithm also derives
information about spatial locality of symbols to decide if the
symbol is a superscript, subscript or neither.

Binarisation and segmentation is implemented in Python.
The segmented images containing individual math symbols
are then passed to a custom designed Convolutional Neural
Network (CNN).

D. Deep Learning

We have made use of Keras to build, train and test our
CNN. Keras is an open source neural network library written
in Python. Keras can use a number of backends including
Tensorflow and Theano. In this application we used the
TensorFlow backend. The architecture of the CNN is
described in section 5.3. The designed neural network gave a
very high cross validation accuracy on the dataset used.

E. Math Engine

Our design is highly modular and can be integrated with
any math engine or computer algebraic system. As a proof of
concept, we have plugged in SymPy as the math engine.
SymPy is a popular open source Computer Algebra system
written purely in python and with limited dependencies. It
hosts a wide variety of features from basic arithmetic to
equation solving, factorisation, integration and
differentiation. Upgrading the math engine used would also
mean addition of new functionalities to the application.
Upgrading the math engine would involve only minimal
changes in the implementation of the ‘Equation Formation’
layer.

V. PIPELINE STAGES OF THE APPLICATION

A. Preprocessing

Preprocessing refers to the transformations is applied to
the image data before feeding it to the algorithms. The data
obtained from input sources cannot be used directly in the
raw format as it may not be feasible for in the segmentation
and recognition algorithms. Analyzing data that has not been
carefully screened for problems such

as noise, corrupted data, redundant information etc can
produce misleading results. Thus, the representation and
quality of data is first and foremost before running an
analysis. Preprocessing improves the overall performance
and accuracy in the pipeline. The steps followed in the
preprocessing stage are listed below.

Step 1 : Denoising The picture of the equation is
obtained from input sources (shown in Figure 2a) contains
noise or small irregularities such as patches, dots, irregular
color shades in the background etc. These irregularities may
disrupt the segmentation algorithm causing the detection of
unwanted symbols in the image. Usage of a bad quality
camera device may result in a blurred image making it
harder for recognition. Thus, a denoising algorithm needs to
be applied to remove noise. A well known denoising
algorithm called the fast non-local means algorithm[13] was
applied to our input as the first step in the preprocessing
stage.

Step 2 : Conversion from RGB to grayscale The image
obtained is in the RGB format. However, for the
segmentation and recognition, the information regarding the
colors in the image is redundant as color is not a feature in
detecting and recognising a symbol. Hence, this information
can be removed by converting the image into a grayscale
format (shown in Figure 2b), thus reducing the size of the
information to be processed in the pipeline.

Step 3 : Binarization of pixel values The grayscale image
formed in the previous step is formed of pixels which take 8
bit values i.e, ranging between 0 and 255. However, the
intensity level of the pixels forming the symbols contribute
no additional information required to recognise the symbol.
Hence, like the color information, the intensity level
information is also redundant and needs to be removed. In
fact, failure in removing such information might hamper the
working of the CNN-based Machine Learning model used
later as they might be considered as features for recognising
a particular symbol.

Like any other segmentation preprocessing problems,
our algorithm also relies on the use of thresholds. In
practice, threshold values cannot be chosen to work well on
all possible inputs. To remove the intensity value
information, we convert all pixels into binary valued data
signifying black or white pixels. We do this by considering a
suitable global threshold for defining the range of values to
be considered for each of black or white. As the range of
values in the pixels of every image varies, the threshold
cannot be considered as a constant value. Hence, we use a
self-adjusting threshold value.

The threshold is calculated for each image to be a
weighted average of the maximum and minimum pixel
intensity values in the image. The weights were set to 0.4
and 0.6 for the maximum and minimum pixel intensity
values respectively. These weights were found to work

4

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

(a) Original equation (b) Gray scale image after preprocessing
Fig. 2: Preprocessing

most effectively with a diverse set of test cases. Increasing
the weight for the maximum resulted in an increased
chance for disconnected components being formed for a
single symbol in the image which would be unfavorable
for our segmentation algorithm. Increasing the weight for
the minimum resulted in an increased chance of creation
of redundant dark patches which would be wrongly
identified by the segmentation algorithm as a connected
component i.e, a symbol.

A summarised preprocessing algorithm can be found
in algorithm 1.

B. Segmentation

Most segmentation algorithms that are currently in use
are based on Machine Learning. However, due to the
scarcity of a large and diverse dataset for segmentation of
mathematical expressions, the performance of such
algorithms might be limited. We have explored the usage
of an alternative method for segmentation.

After preprocessing, the input image is condensed into
a two dimensional matrix consisting of binary-valued
data. Each cell is either 255 (white) or 0 (black). A
symbol consists of only black pixels in the image. Hence,
each symbol can be considered to be a connected
component. For identifying each such connected
component, we propose a method based on the depth first
search[14] (DFS) algorithm. Components identified by the
DFS search are transferred to a separate white image.
Each symbol image is finally cropped and re-sized to a
45x45 size as it is the input size expected by the CNN
model.

This approach of DFS-transfer however, does not
identify symbols with disconnected components (such as
i, j, = etc.). Hence, a few modifications to the algorithm
are made as described in algorithm 2.

The final set of segmented images for the input image
is shown in Figure 3.

C. Convolutional Neural Networks

1). Overview. Humans have been equipped with and
developing the skills of image recognition from the
minute classify most objects that we see in day to day life.
When we look at an image or see the world around us, the
process

5

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

(a) Symbol 1 (b) Symbol 2 (c) Symbol 3 (d) Symbol 4

Fig. 3: Segmented Symbols

(e) Symbol 5

Algorithm 2: Algorithm to generate segmented sym-
bols from binarised image of the equation

Input: binarisedImage
Output: segmentImageList

1 Iterate through all pixels in grayImage from top to
bottom and left to right and perform DFS from the
first black pixel to cover all black pixels that are
connected

2 Take the connected component so formed and add it to
a new image.

3 Convert all pixels in the connected component of the
original image to white to prevent it being detected
again

4 Check if there are any pixels in a range (threshold of
0.5 times the height of the connected component) in
the vertical direction of the already found connected
component. If so start DFS from that point and add
the new connected component to the previous image
formed maintaining the spatial arrangement.

5 This forms an image of a symbol which is added to
segmentedImageList

6 Repeat Steps 1 to 4 from the pixel where the above
steps ended to find the remaining symbols.

of identifying features in the scene, weighing these features,
using prior knowledge and identifying or classifying a
particular object happens so quickly that the underlying
‘algorithms’ applied by the brain seem abstracted to us.
These skills form the basis for the inspiration behind what
came to be known as Artificial Neural Networks (ANNs).
Convolutional Neural Networks (CNNs) are specialised
ANNs that are designed to perform well with images[15].
One of the major advantages of a CNN architecture in
dealing with images is that a manual feature selection
process is not necessary and is abstracted by the neural
network.

A CNN architecture consists of multiple layers stacked
on top of each other. The different type of layers involved in
the CNN architectures that we have used and their
descriptions follow.

Convolutional Layer : This layer comprises of a set of
filters (sometimes referred to as a kernel). These filters

consist of a matrix of values known as ‘weights’. When a
filter is applied to a part of the image (called a receptive
field), these weights are multiplied with the corresponding
pixel values in the image and summed to produce a single
value. This value is taken as the output of that filter over that
part of the image. Each filter is slided or convolved over the
entire image to produce a 2 dimensional output matrix called
an activation map. A set of these maps define the final
output of one convolutional layer. Convolutional layers can
be stacked one upon another by passing the output of one
layer as the input to the next.

Activation Layer : A convolutional layer output is a
linear combination of the input given to it. Hence, a
combination of convolutional layers will result in the output
being a mere linear transformation of the input image. This
would prove to be insufficient in recognising features of
varying complexity in the input image. Hence, to introduce
non-linearity and capture complex features in the output,
certain activation functions are applied to the output of a
convolutional layer. In our experiments, we have used the
ReLU activation function.

Pooling Layer : This is a form of non-linear
downsampling. It reduces the dimensionality of the output of
the convolutional layers by dividing the output into several
regions (usually square regions of 4 or 9 values) applying a
function (such as max-pooling) over every region. This helps
to visualise, identify and make assumptions about the
existence of certain features within a region. A sequence of
convolutional layers is usually followed by a pooling layer.
This is the basic building block of a CNN architecture which
is composed of several such blocks stacked together. The
number of blocks to be used in the CNN architecture to
tackle a particular problem is determined intuitively by the
complexity of the features to be identified in the images. As
the complexity of features to be identified in our recognition
problem was not very high, a single convolutional block
consisting of a convolutional layer followed by a max-
pooling layer was satisfactory in achieving a very high
accuracy.

Dropout Layer : This layer is used to prevent overfitting
by avoiding over-specialisation of a particular neuron in
identifying a certain feature in the dataset used for training.
A drop probability of ‘p’ is associated with

6

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

every neuron in the layer associated with the dropout layer.
Neurons are randomly ‘dropped-out’ with this probability
during training. These layers are used only in the training
phase and ignored (i.e, no neuron outputs are dropped) while
making a prediction on an image. This implies that, the
activation of a neuron is temporarily removed during the
forward pass and any weight updates are not applied to this
neuron on the backward pass. This results in the
neighbouring neurons learning to identify a particular feature
when a particular neuron is dropped.

Fully connected Layer : After several convolutional
blocks, the high-level decision making and reasoning is done
via the fully connected layers or dense layers. This layer is
similar to a traditional artificial neural network where the
neurons are connected to all activations in the previous
layer. Due to this, the spatial locality feature in the neurons
of this layer are absent and hence, these layers cannot be
followed by a convolutional layer.

2). Dataset. The dataset for the handwritten math symbol
recognition was publicly available on the Kaggle online
platform 3. The dataset consisted of 100,000 images, each of
45x45 size. It contains symbols from the greek alphabet,
english alphanumeric characters, math and set operators,
basic predefined math functions (such as sin, cos etc) and
math symbols (such as sum, sqrt, delta etc).

To improve the accuracy of our equation solver
application, only the subset of the dataset containing
required information was used in the training for the CNN
model. This subset contained 26 classes consisting of all
digits, brackets, arithmetic operators, equal sign and a few
english and greek alphabet letters to be used for variables
and constants.

The preprocessing steps described in Section 5.1 were
applied to the images in the dataset. The number of samples
in each class varied heavily which would affect the accuracy
of the model, hence the number of images for each class was
either upsampled (by duplication of data) or downsampled
(by random selection) to a few thousand images per class.

3). CNN Architecture. The architecture used for our
CNN model is described as follows:

Layer 1: Convolutional Layer

• Input Shape = (45, 45, 1)
• Number of filters = 32
• Filter size = (5, 5)

Layer 2: Activation Layer

• ReLU activation function

3. https://www.kaggle.com/xainano/handwrittenmathsymbols/data

Layer 3: Pooling Layer

• MaxPooling
• Pool size = (2, 2)

Layer 4: Dropout Layer

• Drop probability = 0.2

Layer 5: Fully Connected Layer

• 128 output neurons

Layer 6: Activation Layer

• ReLU activation function

Layer 7: Fully Connected Layer

• 26 output neurons

Layer 8: Activation Layer

• Softmax Activation function

The output layer here consists of 26 neurons correspond-
ing to 26 different symbol classes for recognition.

4). Training. The model was trained on the dataset using the
NVidia K40 GPU for 14 epochs. A categorical cross entropy
loss function [15] was applied during the training. Adam
optimiser was used.

5). Results. The training set consisted of 110011 samples
across 26 classes after equalizing the classes. The validation
set consisted of 12236 samples. After training on 14 epochs,
a cross validation accuracy of 99.2 % was achieved.

D. Equation string formation algorithm

After a stream of characters and math symbols are
recognised by the classifier, they have to be strung together
into a string that can be parsed by the chosen mathematical
engine. The way humans represent mathematical expressions
differs from what a computer can comprehend. As an
example, humans generally tend to skip the multiplication
sign between variables or between a coefficient and a
variable. So if the image contains
2x and even if the symbols are individually correctly
recognised, additional mathematical symbols will have to be
appended at appropriate places before passing it into the
mathematical tool (In this case 2 * x). Thus some custom
algorithm has to be developed for the chosen mathematical
engine to take decisions on appending the required symbols.

In addition to this, superscripts require special attention.
Superscripts are recognised during the segmentation process
based on the position of their bounding box. Superscripts
must be treated as powers and passed as such into the math-
ematical engine. In order to enable this, the segmentation
component of the pipeline makes available some information
about the ‘bounding box’ boundary parameters to the ‘String
formation’ component of the pipeline

7

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

E. SymPy

We have used SymPy’s ‘solve’ module to solve simul-
taneous equations of any degree. SymPy has a relatively
simple and natural string format requirement which made it
easier to implement the ‘Equation String formation’ layer.
We have also leveraged SymPy’s graph plotting capabilities
through its ‘Plotting’ module. The plotting module internally
uses matplotlib in the backend to render graphs and plots.
The rendered graph is sent in the response body to the
requesting client application.

VI. CONCLUSION AND FUTURE SCOPE

In this paper we have developed a novel pipeline for
automated recognition and processing of handwritten
mathematical equations. We have presented a machine
learning based approach for symbol recognition. This
application is highly user friendly and gives the power of
solving equations on mobile devices for researchers and
engineers who deal with complex mathematical models. The
symbol recognition approach proposed in this paper achieves
a 99.2% cross validation accuracy on a math symbol dataset
with reduced symbols. This application currently handles
simultaneous equations of any degree, graph plotting and
can also function as a calculator.

The binarisation algorithm currently uses an adaptive
global threshold which can be improved using techniques
based on localised binarisation, making the application more
robust. The image segmentation algorithm can be more
robust (handling non-continuous symbols) and better image
processing methods can be used to remove noise from the
image captured and this can also be extended to work for
colored backgrounds. The dataset for training can be larger,
cover many more mathematical symbols, cover various
styles of writing and the character identifying techniques can
be improved upon, to better the present accuracy of
identification and ensure that the app performs well in
diverse conditions. As of now the simultaneous equation
solver takes inputs one after the other, the app can be
improved to solve a system of equations in a given image. It
can also be extended to solve differential equations.

ACKNOWLEDGMENTS

The authors would like to thank Kaggle for making the
handwritten math symbols dataset available for public use.
We also sincerely thank the talented developers of Keras,
Tensorflow and SymPy for their continuous efforts in
maintaining the libraries.

REFERENCES

[1] Chan, Kam-Fai, and Dit-Yan Yeung. ”Mathematical expression recog-
nition: a survey.” International Journal on Document Analysis and
Recognition 3, no. 1 (2000): 3-15.

[2] Okamoto, Masayuki. ”Recognition of mathematical expressions by
using the layout structure of symbols.” In Proc. 1st Int. Conf.
Document Analysis and Recognition, 1991, pp. 242-250. 1991.

[3] Okamoto, Masayuki, and Akira Miyazawa. ”An experimental imple-
mentation of a document recognition system for papers containing
mathematical expressions.” In Structured Document Image Analysis,
pp. 36-53. Springer, Berlin, Heidelberg, 1992.

[4] Ha, Jaekyu, Robert M. Haralick, and Ihsin T. Phillips. ”Understanding
mathematical expressions from document images.” In Document Anal-
ysis and Recognition, 1995., Proceedings of the Third International
Conference on, vol. 2, pp. 956-959. IEEE, 1995.

[5] Smithies, Steve, Kevin Novins, and James Arvo. ”A handwriting-based
equation editor.” In Graphics Interface, vol. 99, pp. 84-91. 1999.

[6] Chan, Kam-Fai, and Dit-Yan Yeung. ”Recognizing on-line handwritten
alphanumeric characters through flexible structural matching.” Pattern
recognition 32, no. 7 (1999): 1099-1114.

[7] Fateman, Richard J., Taku Tokuyasu, Benjamin P. Berman, and
Nicholas Mitchell. ”Optical Character Recognition and Parsing of
Typeset Mathematics1.” Journal of Visual Communication and Image
Representation 7, no. 1 (1996): 2-15.

[8] Zanibbi, Richard, Dorothea Blostein, and James R. Cordy. ”Rec-
ognizing mathematical expressions using tree transformation.” IEEE
Transactions on pattern analysis and machine intelligence 24, no. 11
(2002): 1455-1467.

[9] Garain, Utpal, and Bidyut Baran Chaudhuri. ”Recognition of online
handwritten mathematical expressions.” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics) 34, no. 6 (2004):
2366-2376.

[10] LaViola Jr, Joseph J., and Robert C. Zeleznik. ”MathPad 2: a system
for the creation and exploration of mathematical sketches.” In ACM
Transactions on Graphics (TOG), vol. 23, no. 3, pp. 432-440. ACM,
2004.

[11] Zanibbi, Richard, and Dorothea Blostein. ”Recognition and retrieval of
mathematical expressions.” International Journal on Document
Analysis and Recognition (IJDAR) 15, no. 4 (2012): 331-357.

[12] Mouchre, Harold, Christian Viard-Gaudin, Richard Zanibbi, and Ut-
pal Garain. ”ICFHR2016 CROHME: Competition on Recognition of
Online Handwritten Mathematical Expressions.” In Frontiers in Hand-
writing Recognition (ICFHR), 2016 15th International Conference on,
pp. 607-612. IEEE, 2016.

[13] Buades, Antoni, Bartomeu Coll, and Jean-Michel Morel. ”Non-local
means denoising.” Image Processing On Line 1 (2011): 208-212.

[14] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. ”Depth-first search.” Introduction to algorithms (2001):
540-549.

[15] LeCun, Yann, and Yoshua Bengio. ”Convolutional networks for im-
ages, speech, and time series.” The handbook of brain theory and
neural networks 3361, no. 10 (1995): 1995.

[16] Nasr, George E., E. A. Badr, and C. Joun. ”Cross entropy error
function in neural networks: Forecasting gasoline demand.” In FLAIRS
Conference, pp. 381-384. 2002.

8

Authorized licensed use limited to: MICROSOFT. Downloaded on May 28,2021 at 07:08:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

